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ABSTRACT

This study examines the issues involved in bringing

qualitative and quantitative techniques to bear upon

unstructured managerial decisions. Furthermore, this work

reviews the problems of user interface and data base inter-

faces as they relate to aspects of model base management.

The focus of this study is to identify some organiza-

tions of knowledge about models within the Decision Support

System. In support of this goal, this report investigates

what knowledge is, how it is structured, and how it is

accessed.
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I. INTRODUCTION

This study examines the topic of Model Base Management

in Decision Support Systems (DSS). Model Management con-

cepts involve bringing appropriate quantitative and quali-

tative techniques to bear upon structured, semistructured,

and unstructured managerial decisions. During the decision-

making session, the effective DSS should assist the user

(unfamiliar with computer science or management science)

in identifying, sequencing, and executing those models

appropriate to the problem instance. A myriad of issues

arise concerning the human interface with this type of

system. These problems include speaking to the user in

terms not excessively technical, and linking the organiza-

tion's data base with the model base. The fields of manage-

ment science, Artificial Intelligence (AI), computational

linguistics, and psychology are involved in providing

theoretical resolutions to some of these problems.

In particular, this work describes the issue of a

knowledge base in support of the DSS. Its intent is to

identify some appropriate organizations on knowledge about

models. Inaipport of this objective it is necessary to

examine general issues about human decisionmaking in organ-

izational contexts. In addition, an investigation is made

about characteristics of the information in the knowledge

base: how much there is, how it is structured, and how

9



it can be accessed. Finally, this study will discuss areas

and implications for further research.

Several conceptual points provided the foundation upon

which this work is built. First, Decision Support Systems

are differentiated from typical management information

system applications by the nature of their task. The DSS

focuses on unstructured problems whose specifications are

unclear or incomplete. Upper level strategic planners and

managers daily face problems with these characteristics.

DSS primarily are targeted to support these planners and

managers.

The traditional aspects of data retrieval and access

remain vital considerations in DSS. In the DSS, much of

the data manipulation and analysis is accomplished by

another segment of the software system called the "model

base". This aspect relieves the user from post-session,

manual data manipulation. This feature makes the DSS much

more flexible, adaptable, and friendly than the typical

Management Information System (MIS) or Data Based Manage-

ment System (DBMS) applications.

A DSS is flexible when it is able to address a wide

range of unstructured and underspecified problems. It is

adaptable when it can approach the problem resolution from

many directions to accomodate varying problemsolving

styles. It is, therefore, the entire objective of the DSS

to improve the performance and productivity of people that

rely on information to make decisions.

10



The work presented here is structured as follows.

Chapter II is a survey of the classic and recent literature

addressing the salient issues of the DSS field. Chapter

III attempts to outline the prominent views of exactly what

constitutes a DSS. Chapter IV surveys the representational

techniques from the field of AI which shows promise for the

DSS field. Chapter V is a description of an actual imple-

mentation of a knowledge base about models, and some English-

like commands that facilitate its use. Chapter VI summarizes

the results and conclusions that can be drawn from this work.

0i



II. THE NATURE OF THE DECISION PROCESS

The study of computer-aided decisionmaking, and in

particular DSS, requires a review of theory regarding the

nature of human decision processes. This review is impor-

tant for two reasons: (1) it aids in designing a DSS

compatible with human beings, and (2), it establishes a

frame of reference for the presentation of this study.

This section discusses the decision process and the decision-

maker, including cognitive styles, organizational frameworks,

procedures and theories regarding human information process-

ing, and decision structures.

A. COGNITIVE STYLES

The manner in which humans perceive and arrive at a

frame of reference, or a problem solution, has been the

subject of much psychological research. It has been

claimed that an inhibiting factor in the application of

quantitative methods to problems is the fact that managers

and management scientists think differently [Ref. 1].

McKenney and Keen [Ref. 2] present four styles of human

cognition. Cognitive style refers to the method by which

n4 humans organize the information they perceive. This style

is, in part, habitual, but is developed through training and

experience. The authors define these styles as perceptive,

receptive, intuitive, and systemic. Preceptive thinkers

12



are those that focus on relationships be reen data. Pre-

ceptive people look for how things differ and conform.

These similarities and differences cue conclusions about

which data to gather, and which decisions to make. Recep-

tive thinkers focus on details of a situation rather than

overviews. Receptive thinkers take a bottom-up approach

to constructing the problem instance. The perceptive thinker

will take an overview, or top-down, approach to problem

formulation. Therefore, the receptive thinker's conclu-

sions are drawn from analysis rather than precepts. Sys-

temic thinkers tend to structure their problem instance to

a solution algorithm; that is, they look at the problem in

terms of how it fits into an existing model solution. On

the other hand, intuitive thinkers are sensitive to clues

that may not be verbalized or overt. Intuitive thinkers

include and discard information in a trial-and-error fashion.

The above models for cognitive stiies are somewhat

supported by other researchers. Edward deBono [Ref. 3]

discusses the concept of vertical and lateral thinking.

Vertical thinking is loosely related to systemic thinking,

where one idea establishes a logical foundation upon which

to construct the next idea. Solution of a calculus problem

exemplifies this style, as one rule is applied to reach a

state upon which another rule is applied, until the solu-

tion is reached. Lateral thinking attempts to escape from

this regimen. Lateral thinkers seek out information from

13



perceived circumstances. Lateral thinking is somewhat

associated with creative thinking, and the idea of pattern

matching from one circumstance to another.

Mintzberg IRef. 41 has related these concepts to the

critical human activities of planning and managing. He

asserts the process of managing is a logical and analytical

endeavor which seeks out the structure and reason in a

scenario. However, he believes management is a highly

intuitive and creative process. The manager, for example,

is more sensitive to unspoken signals, gestures, and under-

lying trends in the scenario. Due to the dynamics and

randomness of organizational settings, "hunches" and

"holistic perceptions" play inportant roles. Managers must

deal with such intangibles as morale, whereas planners deal

with forecasted numbers.

It is apparent that any automated decision aid is likely

to have both systemic and intuitive users. A system which

pathologically attempts to structure the way a decision is

made is likely to invoke frustration and contempt, thereby

defeating whatever good characteristics are endemic to the

DSS.

B. ORGANIZATIONAL FRAMEWORKS FOR ANALYSIS

With this characterization of the nature of individual

thought as a background, this section will attempt to place

the individual inside the organizational setting. At this

14



juncture we are broadening the scope of the DSS, reaching

beyond individual cognition to organizational functioning.

There is, in effect, an interactive and dynamic association

between human decisionmakers and the organizational structure.

Researchers have identified several dimensions to the

phenomenon of organizational decisionmaking. Roland [Ref.

5] speaks of the group, the environment, the task, the

situation, the individual, and the available technology

as having impacts on how information is gathered and used.

Huber [Ref. 6] discusses four organizational decision

models and calls them the decision environment. These are

the rational model, the political model, the garbage can

model, and the program model. Huber defines the rational

model as an environment where organizational units use

information in an intentionally rational manner to make

decisions for the organization. The political model depicts

an environment where organizational decisions are conse-

quences of the application of strategy and tactics by persons

or units seeking to influence decision processes in favor of

themselves.

The garbage can model is somewhat more abstract. In

this theory, a "can" is a choice situation, or an opportu-

nity to resolve a problem. To have a can, people must

perceive a problem. The garbage can model discusses a

decision as the consequence of problems looking for solu-

tions, solutions looking for problems, and opportunities

15



for making decisions. The program model sees two reasons

for organizational decisions being what they are: (1)K decisions are constrained by standard operating procedures;

* iand (2), programming, training, and experience reinforce

past decision processes which, in turn, affect future

decisions (history constrains choice).

Huber goes on to say that certain types of information

are required for each model. The rational model, for

example, looks at several types of data in great detail in

an effort to project the logical decision. The political

model, however, icoks less at data, and more at the people

involved in the situation, and how they can be influenced.

The important question in the garbage can model is "what

are the problems and opportunities that are present in the

organization"?

The program model infers that the organization can be

understood best by looking at several key elements of in-

formation. The first element is historical trend; trends

from the past can be projected into the future. Another

element of importance is the experience of the organiza-

tion; experience creates a pattern of behavior and policy.

Standard operating procedures also are important elements

in discovering the organizational priorities and concerns.

The reader may notice a certain parallel between organ-

izational models and cognitive styles. A systemic and

receptive person may find it easier if the work environment

16



follows the rational model. On the other hand, intuitive

and perceptive thinkers may experience greater success in

a garbage can business.

Most organizations exhibit characteristics of all of

these models. A comprehensive DSS will accommodate the

breadth of models and cognitive styles presented here.

C. TYPES AND STRUCTURES OF DECISIONS

DSS typically are touted as supporting unstructured

decisionmaking. The literature, however, is somewhat vague

in defining exactly the differences between structured and

unstructured decisions and which problem instances are

structured and which are not. Some authors contend that

if an algorithm can be placed upon the parameters, then

it is a structured decision. Others contend that unstruc-

tured decisions can be transformed into structured ones

(Ref. 7].

Stabell [Ref. 81 discusses three dimensions to the

structure of a decision. The first dimension relates

structure to alternatives. The degree of structure is

determined by the ease with which alternative solutions

can be identified, i.e., the easier it is to generate

soluticns, the greater the structure. Consider, for example,

an office building with hundreds of employees, and a very

overworked elevator system providing access to its 50

floors of office space. Employees are late for work, late

going to lunch, and late returning. This adversely affects

17



morale and productivity. Given that the structure of the

building will not allow for the addition of any more

elevators, and the lift capacity already is optimized,

what are the tenants to do? This is an example of a problem

where structured models have contributed all they can to

optimize lift capacity. It is quite difficult to generate

solution paths through this problem, and is, therefore,

unstructured according to the parameter of alternatives.

Let us look at this problem from another of Stabell's

dimensions, task predictability. In an unstructured task

it is difficult to predict the consequences of the decision

to be made. It may be difficult to trace through the chain

of events that are apt to occur. The more unstructured the

task, the greater the number of variables relevant to the

task solution. In our example, we might consider staggering

work hours and lunch hours, or perhaps add escalators in

the stairwells (if possible), but can we predict with any

degree of certainty the relative impact of these decisions?

This leads to Stabell's final dimension--that of

epistemic uncertainty: that is, which variables are

important and relevant to the task solution? This is,

perhaps, the most difficult question to answer. Returning

to our example, which is in fact an actual case, consider

the subsequent solution which illustrates the difficulty

in predicting important variables. The overriding diffi-

culty with the elevator overload was the impatience of

18



those waiting to get to his or her destination. When the

owner put mirrors on the walls around the elevators, com-

plaints dropped off drastically. Evidently people now

were occupied by watching themselves and others while

waiting for the elevators.

Structured decisions give clear clues as to which

variables and solution algorithms are needed. These might

include certain short term forecasting functions, and

linear optimization problems which are deterministic in

nature. Unstructured tasks include mergers, portfolio

management, and new product development--each of which have

complex variable interactions. Of course, semistructured

tasks share aspects from both ends of the spectrum. Pro-

duction scheduling, for example, involves some structured

aspects for optimizing production, and some unstructured

aspects such as inventory ramifications and input avail-

ability.

The preceding discussion is designed to illustrate the

dimensions of structure to a decision or problem instance.

Gorry and Scott Morton [Ref. 9] point out the functional

contexts, or types of decisions, which were implied earlier:

operational control, management control, and strategic

planning decisions. Each of these can vary with regard

to structure, organizational framework, and individual style.

Independent of cognitive style is the theory of human

information processing. The next section provides a short

19



discussion on the classical theory of how humans retrieve

and store information they process.

D. HUMAN INFORMATION PROCESSING

Newell and Simon [Ref. 101 provide the classical theory

of human information processing. Most theories of human

information processing include several steps: gathering

information, problem identification, generating alternatives,

prioritizing solutions, evaluating alternatives, implement-

ing actions, and evaluating feedback. This is the well-

known intelligence, design and choice, which Newell and

Simon describe as a serial process which makes use of small

short term memories, and large long term memories--both of

which have varying "read" and "write" times. As a result,

the authors contend that the problem solving process is

somewhat related to a heuristic search algorithm in Al.

Specifically, the problem solver has some goal in mind,

and a current condition. By comparing them, one can

generate steps that help move from the current state

toward the goal. Take, for example, Rubik's Cube. A

certain number of moves lead toward the ultimate solution,

and the problem solver assesses the current condition of

the cube, with the goal being solid colors on all six

sides. This is sometimes called means-ends analysis.

An important contribution of this theory is the

characterization of the memories involved (the processor

is discussed under cognitive styles). Short term memory

20
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can be written to quickly, but cannot retain much informa-

tion (five to seven elements). A phone number is a good

example. After looking it up, one must repeat it several

times on the way to the phone. Writing to long term memory

requires a longer memorization process, but once accomplished,

it stays in memory a long while.

E. SUMMARY

Four dimensions of the decision process have been dis-

cussed: cognitive style, organizational frameworks, the

structure of decisions, and the manner in which humans

process information (Figure 2.1). Each of these dimensions

in the decision process are important when considering

design of the DSS. A system which has strengths in one

area may not be used due to weaknesses in another. Take,

for example, MYCIN [Ref. 11]: most experts agree that

this system diagnoses infections very well, but it is

used very little. This is due, in part, to the importance

of making a correct diagnosis when choosing a course of

action. Can, it be that the organizational framework is

inappropriate for such a system? Perhaps expert systems

are best suited for places, and organizations where experts

are not available.

Figure 2.1 summarizes some of the elements important in

the design and implementation of DSS. These elements are

cornerstones of success for the DSS. Although somewhat

intangible and nonquantifiable, these elements must be

21



DESIGN FEATURE KEY CONSIDERATION

PRECEPTIVE,RECEPTIVE
COGNITIVE STYLE SYSTEMICINTUITIVE

ORGANIZATIONAL RATIONAL,POLITICAL,
FRAMEWORK GARBAGE CAN

STRUCTURE ALTERNATIVES,
EPISTEMIC UNCERTAIN
_PREDICTABILITY

TYPES OF STRUCTURED, SEMI-

DECISIONS STRUCTURED, UNSTRUC

HUMAN INFORMATION INTELLIGENCE,DESIGN

PROCESSING CHOICE, MEMORIES

Figure 2.1: Important Elements in the Decision Process.
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considered in the physical implem~entation~ described in

the next section.
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III. DEFINITION OF THE DECISION SUPPORT SYSTEM

The term Decision Support System (DSS) has been used to

refer to a wide range of decision assisting tools. The list

may include a manager flipping a coin; an executive work

station where one can speak in a natural language to a

battery of display devices; or a system with the ability to

dynamically formulate, resolve, and present several illus-

trations of a problem solution (numerical versus graphical

output). The only fundamental consensus that runs through

the field of DSS is that they should assist humans in making

decisions.

A. TYPICAL DECISION SUPPORT SYSTEM PARADIGMS

There are two important paradigms within the body of

literature on DSS. Each has an important framework, yet

each illustrates a distinct difference. Sprague and Carlson

[Ref. 12] present a very comprehensive paradigm which is

presented in Figure 3.1. These authors define the DSS as

an interactive computer-based system that helps decision-

makers utilize data and models to solve unstructured problems.

They see a DSS as three subsystems:

(1) A Dialog Management System (DGMS),

(2) A Model Base Management System (MBMS), and,

(3) A Data Base Management System (DBMS).

They further divide these subsystems into various

components. The Dialog Management System, for example,

24
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includes a display or presentation language, such as the

graphics that the user sees. The DGMS also includes the

input language or facilities (trackball, mouse, light-

pen). An important feature of the DGMS is the knowledge

base, or what the user needs to know to communicate with

the system.

The Model Base Management System provides model manage-

ment capabilities by integrating a wide range of quantita-

tive techniques for all levels of management. Further,

the MBMS must provide for:

(1) The creation of new models;

(2) the access to existing models;

(3) the integration of existing models;

(4) the modification of specific model blocks;

(5) the modification of multi-module models;

(6) the cataloging of the model base; and,

(7) the linking of the models to the data base.

The DSS demands full DBMS capabilities. Data extraction

must be rapid and flexible enough to respond to unantici-

pated user requests. Other important features include the

ability to elicit data from a variety of sources, and the

ability to add or remove data sources. The DBMS also

should handle unofficial data from experimental sources,

as well as having the ability to portray data structures

in understandable form to the user, such as a relational

data structure.

26



In the above discussion there is no mention of how the

system is invoked to solve the user's specific problem. It

is in the implementation that conceptual di.ffcrences are

most readily observed. Sprague and Carlson rely on an

evolutionary development of a DSS. Each increment is

designed and built to satisfy a specific user problem

instance, or group of instances (i.e., a financial analysis

package). In practice, the manager communicates his

specifications to an implementor, who determines with the

aid of a toolsmith and a builder which models and other

packages the specific DSS calls for.

Implicit in this scheme of implementation are the

following assumptions:

(1) the manager is aware of the exact problem;

(2) the intermediaries (builders and toolsmiths) are

aware of the solution techniques for the problem; and

(3) the problem ,: aracteristics are static enough to be

predicted prior to design and development.

Problems with these characteristics are likely to be

somewhat structured. This may contradict the definition

that the DSS is for unstructured decisionmaking (for

Sprague and Carlson's implementation procedure). Figure

3.2 illustrates the authors' implementation method.

A second paradigm for DSS is discussed in Bonczek,

et. al [Ref. 131, who view the DSS as consisting of three

subsystems. These elements are a Language Subsystem (LS),

Knowledge Subsystem (KS), and a Problem Processing Subsystem

(PPS). 27
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SPECIFIC DSS APPLICATIONS

r THE DSS GENERATERI

DSS COCLS

Figure 3.2: Sprague and Carlson'sI

Implementation Technology.

q - [Ref. 12]
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The LS is meant to encompass the total of all linguistic

facilities (retrieval and computational languages). This

perspective appears to eliminate vehicles other than a

language from the LS. An important aspect of the LS is

that it can be designed so that the user is unaware of

whether he is directing a data retrieval or model construc-

tion process.

The authors remark that unless the DSS contains knowledge

about the decisionmaker's problem domain the system will be

of little practical value. Therefore, the KS contains facts

that the user need not retain. This concept echoes Sprague

and Carlson's knowledge base, but differs significantly in

prominence within the paradigm. It prescribes that the

knowledge base be an important part of the DSS.

The PPS is a mechanism which relates input from the

language system to facts and hueristics about the problem

domain. It is through the PPS that problems are recognized,

models formulated, and data retrieved. The authors relate

this aspect of the automated system to human decision-

making. In essence, their perception of DSS emulates the

human process of problem solving, that is, the problem

must be verbalized in a manner understandable to the problem

solver whose special knowledge is brought to bear on the

problem solution.

This concept varies considerably in implementation from

the Sprague and Carlson model. It does not assume that the

29
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decisionmaker has extensive knowledge about the problem and

future environments, and it does not insert human communi-

cation between the user and the builder or generator. As

a result, it appears to be a more flexible paradigm.

This study includes paradigms to define and construct

the DSS presented as in Figure 3.3. The DSS can be char-

acterized as having multiple and easy-to-use input languages,

a knowledge base that responds to these inputs to ask the

user for further clarifications to identify problems, a

readily accessible data base, a model base, and a problem

processor that takes information from the knowledge base

to construct models and to link with data to provide a

system response.

In implementation, the knowledge base will hold infor-

mation regarding problem instances and model applications

to these instances (the problem this study addresses), so

that there is no requirement that a decisionmaker foresee

circumstances. This helps to make a DSS a more generalized

tool.

Although it is not the intent of this study to address

matters of implementation, they are important in helping

to clarify the nature of their usage and, therefore, their

definition. Sprague and Carlson's evolutionary approach

appears to be to develop one specific DSS at a time, but

not with a preconceived solution template in mind, as the

knowledge base rests with the user. The foundation upon
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which this thesis is built calls for an evolutionary

approach that facilitates a variety of solutions. The

tradeoff between a specific problem and a general (generic)

solution algorithm is thus established. This introduces the

importance of Artificial Intelligence to the world of DSS.

B. KNOWLEDGED-BASED SYSTEMS

This section deals with the concept of knowledge-based

systems. These systems are introduced here to distinguish

them from DSS, as well as to lay the foundation for the

following section on model base management.

In Artificial Intelligence, the terms of "knowledge-

based systems" and "expert systems" are analogous. They

are terms that define a computerized expert in a specific

application. Such applications are widely varied, ranging

from medical diagnosis to teaching aids. What each system

has in common is a pool of expert knowledge to which it

refers to make sound decisions.

Winston [Ref. 14] describes two important points about

expert systems. The first point deals with the construction

of the expert system. This includes the idea of a state,

or some assessment, of the current circumstances. There

also exist control variables, or transformation operators,

which take as input the current state, apply some operation,

and provide as output some resulting state. The concepts of

iteration and recursion play important roles, as do division
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of problems into subproblems, and repeated application of

the transformation operators, known as recursion.

The second idea of importance contributed to DSS from

expert problem solving is the question of which knowledge

is important to the system. Winston calls this topic know-

ledge engineering, which includes the following questions:

What kind of knowledge is important? Is this knowledge

specialized? What are the most important ideas? How

should this knowledge be represented? How much knowledge

should be represented? Does a handful of facts cover 99

percent of the likely circumstances? Does comprehensive

knowledge require extraordinary programming effort? And

finally, exactly what information is required? For example,

if the system is designed to perform calculus functions,

then rules for integration and differentiation are required.

In a natural language understanding system, knowledge about

semantics as well as syntax is important. In other words,

having the appropriate structure is not enough--the meaning

of the elements play a vital role.

As Winston states:

Like compiled computer programs, memorized for-
mulas give little opportunity for assessing the
sources (of the knowledge) with the natural result
being poor response to even slightly unexpected
changes. . . . formulas are essences irreversibly
distilled, general techniques for summary and speed.

A DSS can be seen as an expert problem solver dealing

with problems that arise in a strategic environment.

However, a DSS must be a more comprehensive knowledge-based
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system to respond to the unexpected changes to which Winston

refers. Expert problem solvers typically deal with one

specific domain. MYCIN [Ref. 11], for example, deals solely

with diagnosis of infections. A DSS, on the other hand,

must be prepared to span several problem domains (e.g.,

financial, marketing, production, and personnel).

Some aspects of DSS are especially compatible with the

techniques of expert systems, particularly model base

management. AI techniques add an extra dimension of flex-

ibility to the DSS. Through innovative procedures they can

at least attempt to match situations and circumstances to

existing data structures and processes. This is reminiscent

of the chess playing algorithm. On occasion, when the human

has stumped the program, an interesting phenomenon occurs--

the system persists in making the best possible move. This

is the type of response that must occur at all levels of

the DSS. This is an effort to maximize the application of

the DSS. Al techniques of pattern matching, heuristic

search, and natural language understanding--all contribute

significantly to the design of DSS. The following section

looks in detail at model base management, an area of DSS

which may be significantly enhanced by AI techniques.

C. ELEMENTS OF MODEL BASE MANAGEMENT

The focus of this study is on elements of the DSS that

involve model base management. There appears to be some
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consensus as to what MBMS objectives are; however, techniques

for accomplishing these functions differ.

Bonczek, et. al. (Ref. 15] lists five points for the

design of model support in DSS:

(1) models should support a variety of functional areas;

(2) models should be able to stand alone, or in a job

stream with other models;

(3) model bases should have the ability to extract data

from the DBMS;

(4) model bases should have a command language for easy

interface; and,

(5) model bases should evolve in knowledge and use ("learn").

This suggests a definition of a model base for the purpose

of this study. A model base is a collection of models, where

models are analogous to data in the data base. The model

base will consist of models that either are user built,

built by a model builder internal to the organization, or

externally purchased. In addition, the model base must

support a variety of tasks and analytic approaches to

problem resolution. It is important to point out that

some models will be building blocks in other, more compre-

hensive models.

Some of the objectives of the data base management

system carry over to the model base management system as well:

(1) application independence;

(2) model update, creation, and deletion;
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(3) maintenance of a model dictionary; and,

(4) provision of a convenient user interface.

The issues of model base management involve practical

considerations as well as design theories. For example,

it is one matter to advocate convenient user interface, and

quite another to decide what "convenient" means.

Again, the field of AI makes important contributions to

the attainment of these objectives. This contribution

involves considerations about the type and organization of

knowledge important to the model base. Data base admin-

istration also provides important insights about the

problem of storing and accessing information about models.

Combining the contributions from each field may be fruitful,

especially when considering Dolk's model abstraction [Ref.

161, and Minksy's frames [Ref. 171.

Furthermore, we can discuss the specialized knowledge

about each model or model component within the framework

presented by Winston [Ref. 17] for expert systems. For

example, the model base builder and administrator must

decide how much information about each model or component

is appropriate. Too much information may render the system

unnecessarily cumbersome in terms of user response and

overhead; on the other hand, too little information may

similarly render the DSS inadequate.

In addition, the designer and the builder must deter-

mine what information is needed for model base management.
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This includes issues like: how detailed and specific the

knowledge should be, what generalities about classes of

models should be included, and which ideas and aspects

about a model instance are most important?

Besides asking what level of detail to include, one

must determine which items of knowledge should be included.

Should knowledge about the mathematical algorithm be

included? Is it likely this knowledge will be beneficial

in light of what we have said about human information

processing? What about lists of applications to which the

model has been, or could be, applied? Should the system

be self-teaching? For example, once a new application has

been identified by a user, should the list of applications

be automatically updated? Finally, what types of repre-

sentational techniques should be used?

In the preceding paragraphs there have been discussions

and questions relating to human cognition, organizational

frameworks, DSS definition, human information processing,

definition of the DSS, knowledge-based systems, and model

base management. The purpose of this survey is to identify

the important considerations and objectives of a DSS. From

this point, the scope is narrowed to model base management.

In the following sections, the questions and considerations

previously identified are applied to the major problem of

how to represent models and knowledge about models. In

essence, model management must meet many criteria (as

37



must DBMS and DGMS). The way models are represented has

an important impact on the usefulness of the DSS.
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IV. A SURVEY OF ARTIFICIAL INTELLIGENCE

FOR MODEL BASE MANAGEMENT SYSTEMS

A. REPRESENTING KNOWLEDGE USING PRODUCTION RULES

As a means of representing knowledge, production systems

rely on condition-action pairs called production rules. Barr

and Feigenbaum [Ref. 181 assert that a production system con-

sists of three parts:

(1) a rule base, composed of a set of production rules;

(2) a context, in the form of a short term memory buffer;

(3) an interpreter which controls the system's actions.

A production rule consists of a condition part and an

action part. For example, a typical production rule has

the format:

IF (condition) THEN (action)

The context is essentially the list of all conditions

which must be met to execute (or "fire") the action. This

context changes dynamically as some actions might require

the system to satisfy other conditions, all of which will

reside on the context list.

The interpreter is an application specific program which

decides what to do, given that certain conditions are met.

For example, some tasks of the interpreter consist of:

adding elements to the context list, check for duplicates

on the context list, update the context list, and execute

the production rules.
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Some of the advantages of production rules include:

(1) Modularity--Each rule can be considered a piece of

knowledge in that it states a situation and shows what

should occur when that situation arises. Rules are easily

added and removed. This is possible because one production

rule does not call another; they merge only via the context

list.

(2) Uniformity--Because production rules are all inter-

preted by the same interpreter, they must be in the same

format. This has the advantage of being more easily under-

stood by a person not involved in the initial development,

therefore, it is somewhat self-documenting. Semantic nets,

discussed in the following section, are somewhat free-form

in comparison, making them more difficult to understand,

and more difficult to use.

(3) Naturalness--"If-then" types of conclusions are

frequently used by human experts in explaining what deduc-

tions they make in reaching conclusions. Statements saying

"what to do given a particular situation" are quite natural

to the human user. Semantic nets are not as precise in

their relations to a situation making them slightly more

cumbersome to understand by humans in a deductive situation.

Disadvantages include:

(1) Inefficiency--The advantages of modularity and uni-

formity require large amounts of rules to describe complex

and dynamic situations. This phenomenon, known as
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combinatorial explosion, creates extensive overhead in terms

of run-time and memory resources. Because of the precise

nature of production rules, plausible problem situations

have to be preprogrammed, making them somewhat inflexible.

In other words, production systems need a high degree of

knowledge management and structure.

(2) Opacity--It is difficult to follow the flow of

control of an interpreter firing off production rules. A

high-level language, by comparison, can be traced with

relative ease as it calls for subroutines.

Aks an example, consider a model base consisting of

forecasting, optimization, probabilistic, and simulation

models where optimization models consist of both nonlinear

and linear models, and in turn, linear models are tied to

applications such as transportation, transhipment, assign-

ment or goal programming. The sample production rules

might look like:

Production rule 1: IF (objective function is linear)

AND (linear constraints)

THEN (put linear programming model

on context list).

Production rule 2: IF (units of commodity are to be shipped)

THEN (put transportation model on con-

text list).

The interpreter in this example separates the rules and

restructures them into a new statement which, when executed,
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accomplishes the action required. For example, this might

involve evoking a new program composed of action parts that

invoke the required model input procedures for the user.

In summary, production rule systems are useful when:

(1) the knowledge we are trying to represent is essen-

tially deterministic rather than heuristic;

(2) the processes carried out can be seen as a set of

independent actions; and,

(3) each action element is relatively independent of

other actions.

In terms of model base management, two factors determine

whether production rules are appropriate: what knowledge

will the system assume that the user has, and what knowledge

will be an integral part of the system? In the above

example, a user may not realize whether his constraints

are linear. It may demand a lot of a production system to

determine whether the problem calls for a specific model.

For example, in a production system each "if-case" must be

anticipated. In an unstructured setting, this is not

practical. All circumstances cannot be foreseen, therefore,

all rules will not make it into the data base; for this

reason, production systems are more suitable for struztured

situations.

B. SEMANTIC NETWORKS

As a representational scheme, semantic networks have

been used in many applications (Ref. 191. Their chief
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advantage is the ability to represent relationships between

states or objects. Barr and Feigenbaum [Ref. 18] define

the notation of semantic networks to be a series of nodes

connected by arcs. Nodes normally represent objects or

concepts, and arcs represent relationships between them.

Making inferences from the semantic network (or reason-

ing with the network as a knowledge base) has taken a variety

of paths. One method is called network matching. Say, for

example, we have decided to represent our model base using

semantic networks (Figure 4.1). Suppose further that the

user needs to know if there are any models in the model base

that use such elements as "commodities shipped",

"destinations", and "sources". He or she is not aware, nor

particularly concerned whether the model being sought is

linear. In effect, the user will develop a network fragment

such as that in Figure 4.2. This fragment represents a

problem instance. This instance is compared against the

network representation of the model base, and matches are

presented to the user. Of course, if there are no matches,

an appropriate response to the user might include closest

possible models.

The power in matching is the inferencing it can support

when properly implemented. For example, suppose we want to

ask: "are there any models that analyze transportation

problems?" The network is depicted in Figure 4.3. This

fragment does not exactly match the network in Figure 4.1.
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The system would have to deduce, through several links, that

such a model exists. Through the model's "has-part" link,

optimization's "has-part" link, and linear-programming

model's "is-a" link, the identification of the appropriate

model is made. This is easy to accomplish from the semantic

network by examining the relationships to the model node.

The use of heuristics can augment this selection process.

If a language such as LISP [Ref. 201 were used to imple-

ment this knowledge base, its vehicle would be property lists.

A property list contains certain information about a specific

concept or object (node). On the property list of models,

for example, one would attach linear programming, nonlinear

programming, etc. On the list of linear programming models,

one would put the values of transportation, assignment, etc.

In this manner a series of is-a, has-part, and similar-to

relationships are associated with certain properties. For

example, the first statement in Figure 4.4 would assign to

the property "model" the values "optimization", "simulation",

and "forecasting". Statements two and three assign further

values to the subcomponents of "model". Statements four,

five, and six illustrate how to retrieve this information.

Thus, a series of LISP programs and property lists can

be constructed to analyze a semantic network. A central

problem in designing semantic networks, and one to be

addressed in this presentation, is what properties and

relationships to include. Is-a and part-of are important,

but what others are important for model base management?
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1. (putprop 'model' (optimization simulation
forecasting probability) 'instance

2. (purprop 'optimization '(linear non-linear...)
'instance)

3. (putprop 'linear '(transportation assignment...)
'instance)

4. (get 'model 'instance)

5. (get 'linear 'instance)

6. (get 'optimization 'instance)

7. execute the model

Figure 4.4: Building Property Lists and Retrieving Their
Values.
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Aggregate network structures are sometimes referred to

as frames. The idea here is that frames will contain all of

the has-part and is-a links of major conceptual parts of

the network. The following discussion of frames illustrates

this point.

C. REPRESENTING A MODEL BASE WITH FRAMES

Conceptually, a frame is analogous to a frame of reference.

As humans we are confronted with many situations which are

quite similar to previous experiences. We come to expect,

for example, certain things in a place we call a restaurant.

While we learn to swim, we begin to recognize the relations

between movement, bouyancy, breathing, and choking on water.

The next time we swim, hopefully we improve, for we have a

knowledge frame of reference about our environment which

becomes more detailed with experience. If a machine could

capture this human quality of applying past experience to

current situations, the potential for learning and problem

solution might be significantly enhanced. This is the

objective of Minsky's [Ref. 17] theory of frames. A frame,

as defined by Minsky, is a data structure for representing

stereotyped information about a situation.

Frames easily represent hierarchical information. At

top levels, certain generalities are included to represent

things always encountered in a particular situation--at a

birthday party there is always a cake. At lower levels,

sometimes called terminals, there are specific instances
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that distinguish it from similar situations. A pinata, for

example, might give indications of the cultural heritage of

the group which could cue further searches.

Figure 4.5 illustrates the nature of the hierarchy of

frames as applied to our sample model base. An "abstrac-

tion" is a notion related to a frame. It is a structure

describing certain features about an object (in our case,

a model). An abstraction contains such things as data

objects, and assertions describe the relationships between

them. Note that some information in the Figure can be

related to the notion of a model abstraction. For example,

knowledge about the behavior between the operators and the

objects is described in the transportation model with asser-

tions such as C(ij)--being the cost of shipment of a

commodity between source i and destination j.

Frame implementations are another form of property

lists. The vocabulary of frames is somewhat different,

however. The property list is assigned to describe a

particular frame name. Properties now become identifying

characteristics called slots. Slots are the general charac-

teristics of an object or idea. Slots may take a variety

of values. (Tables in a restaurant may be either French

Provincial or Early American.) A slot in Figure 4.5,

for example, would be one of the linear programming models.

There may be several types of algorithms to solve the

linear programming models. Hillier and Lieberman [Ref. 241

50



Fo-tumi z a t i o
frame

linearproamigisram

tranhi entro

assigmeprbe

n destination

framuplyfrme

transpordemandpratle

similar-to:t Pransipme

*~~ ~ssgmn Figrobem5 oe Bs fFae

multiivisinal Poble

trnpraio rbe



describe at least two, and these instances would be "facets"

associated with the frame name of Transportation Problems.

Facets are the values that a slot might assume. For example,

when talking about a restaurant that we have not seen, we

might picture what the tables look like. We have a mental

picture of booths or tables. Therefore, this picture becomes

a default value for the slot tables. In the frame, this

value is kept in the default facet. The value facet will

contain the actual value of the slot. If in reality our

restaurant had only stools and a bar, then the value facet in

the tables slot would have the entry "bar". The value of

the facet would be the actual model instance. Depending

upon how the frame is constructed, there may be several

values associated with a facet. For example [Ref. 20],

the general form in LISP might be the frame in Figure 4.6.

In the process of trying to match a problem with a frame,

the various slots, facets, and values must be matched. Some

default values will be established, and the trail eventually

should lead to the correct (or most similar) existing frame.

It is during this process that a "frame gestalt" is developed

[Ref. 21]. A set of frames called the gestalt is selected,

based on clues from input or gathered during the search.

By examining each similarity and difference between frames,

the system minimizes the possibility of missing obvious

alternatives.

Frames show promise in settings that essentially are

information systems. Many frames linked in a knowledge
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((FRAME NAME) ((SLOT) ((FACET 1) (VALtJEl)
(VALUE2)

(FACET 2) (VALUEl) . ..

(SLOT2) (FACET1L ....

Figure 4.6: The General Structure of a Frame (Ref. 201.
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base constitute a "frame system". This frame system provides

for the creation, modification, deletion, storage, and

retrieval of knowledge from frames or related frames. The

frame structure is used for pattern matching purposes during

the execution of an application. The best example is a LISP

program called DOCTOR [Ref. 22]. The user inputs a sentence,

and the system matches it to a frame, looking for appropri-

ate responses within that frame. A sentence entered, such

as, "I am worried about my sister", evokes the response from

DOCTOR, "Tell me about your sister".

In summary, representation of the model base in the frame

format provides for establishing relationships among alter-

natives at the same level, and hierarchial relationships

between model descriptions at different levels. In the

implementation of frames, knowledge about models is included

in the frame description. Considerations about both how

much and what kind of knowledge to be included is yet to

be discussed.

D. FRAM4ES AND ABSTRACTIONS

Turning our attention to a detailed look at the model

abstraction offered by Dolk [Ref. 16], the idea of a model

abstraction has its roots in data base management. It is

convenient to conceptualize model base management in the

same way we have learned to think about data base manage-

ment. This is especially apparent when attempting to

assemble data elements for an application in much the same
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way we desire to assemble models. The same functions

applicable in data base management are appropriate in

model base management:

(1) adding elements to a model,

(2) deleting elements from a model,

(3) creating elements,

* (4) modifying elements of a model.

Figure 4.7 illustrates the general structure of a model

abstraction. It is clear that these procedures are impor-

tant to satisfy certain imperative characteristics of the

DSS, namely flexibility, adaptability, and user friend-

liness [Ref. 12].

Flexibility is achieved because the model abstraction

has the ability to adjust to changing circumstances.

Adaptability requires that new models be built in a trouble

free manner, which is also characteristic of the model

abstraction. Together these assets provide for a meaningful

dimension of user friendliness.

Using Dolk's abstraction for the Simultaneous Equation

Estimation Model (SEEM), we can take a detailed look at

an abstraction. An abstraction has three elements: (1)

data objects, (2) procedures, and (3), a set of assertions.

The procedures of an abstraction act upon the specific data

objects. Procedures such as creating an econometric model

can be found in Dolk's abstraction for SEEM. Other pro-

* °cedures found there include deleting and adding equations
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Figure 4.7: The General Structure of an Abstraction
(Ref. 16].
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to the model. These features support the requirement for

adaptability and flexibility so important to the effective-

ness of the DSS.

Data objects are those elements acted upon by the

operations. In SEEM, a data object is an equation which

might be recursive or simultaneous. The procedures add

and/or delete such equations to tailor the model to the

circumstances. Data objects are the essential building

blocks of the model, whereas procedures are the methods by

which the model is constructed.

Assertions describe relationships between data objects

and procedures. For example, an assertion in the SEEM

model is that equations are either simultaneous or recur-

sive. Assertions are important to ensure the proper

development and/or integrity of the model.

Some important similarities and differences exist

between model abstractions and the notion of frames.

According to Dolk, model abstractions form a knowledge

base for Model Management Systems (MMS). In addition, they

are viewed as templates for constructing model instances.

Facilities for doing this are not available, however,

therefore a more flexible structure, the frame, is being

considered. The model abstraction might be seen as a frame

with slots and facets for procedures, data objects, and

assertions. Abstractions, however, appear to be well-suited

for manipulating model elements internally. Frames, on the
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other hand, have the strengths of inheriting information

external to the model. A frame system containing such

knowledge as the class(es) of models could be used to

construct dynamically new frames and model abstractions

from existing ones. This would add deeper dimensions of

adaptability and flexibility in the model base management

system, which model abstractions cannot provide. The

next Chapter outlines the specifications for such a system.
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V. ORGANIZATION OF KNOWLEDGE ABOUT THE MODEL BASE

-. The question to be addressed in this Chapter is "how

can frames augment model abstractions to form a more com-

plete knowledge representation mechanism?" Each method

has its relative strengths and weaknesses, but how can we

combine the representation schemes so the strengths of each

are retained? For this answer, we must reexamine the

capabilities of a model management system in context of

the frame and abstraction.

A. LEVELS OF ABSTRACTION

It is now clear, through the discussion on frames, that

they are well-suited for hierarchical organization of know-

ledge. Frames are capable of representing several levels of

abstraction quite easily. Model abstractions, on the other

hand, appear best suited for first and second level abstrac-

tions of the model base. A first level abstraction is the

lowest level of knowledge about a model. Lowest level means

that it has the most detailed knowledge about a specific

model. A second or higher level abstraction contains infor-

mation that can be generalized to more than one model.

* The concept of levels of abstraction is important in

satisfying the objectives of a DSS outlined previously.

Since a DSS must support a variety of decisionmaking

processes easily, the system must be able to respond to
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users with varying levels of knowledge and expertise about

the model base.

Bonczek, et. al. (Ref. 15] illustrate the notion of

abstractions as applied to a knowledge base. Record types

and record occurrences are central to their theme. A record

type is the highest level abstraction, if it is not an

occurrence of another record type. For example, the record

for "models" is a record type. Instantiation of this record

type includes record occurrences of optimization, fore-

casting, simulation, and probability. These instances are

at one subordinate level beneath model. Optimization, for

example, is both a record type and a record occurrence of

models. Levels beneath optimization include linear and non-

linear models. These also are record types, as well as

occurrences, because linear programming models have such

instances as transportation, assignment, and transshipment,

among others. Even these are not on the lowest level,

however, because actual model applications are seen as

instances of transportation and other algorithms. Figure

5.1 illustrates the logical and occurrence structure of these

levels of abstraction.

A model record, throughout levels two through five, is

determined by the problem it solves. It can differ from

similar records either by processing method, approach to

the solution, or input requirements.

6Furthermore, construction and execution of a desired

model is based on modifying and combining various known
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information-processing roles at all levels of the hierarchy.

It is this aspect that endows the model base with the

ability to be responsive to users with varying levels of

knowledge about models. Knowledgeable model users can

enter the knowledge base at lower levels of the hierarchy,

whereas novice users can enter at higher levels. Therefore,

the more levels of abstraction that characterize the system,

the more generalized it becomes, and the less knowledge

about the model base is demanded of the users.

Frames are ideal for representing knowledge on several

levels of abstraction because of their ability to inherit

from associated concepts and skills. On the other hand,

model abstractions have the ability, through the use of

assertions, to link to the data base in an orderly and

efficient manner. In addition, the use of model abstrac-

tions has the added advantage of convenience. It is easier

to think of the model base in the same terms as one thinks of

the data base. In fact, model abstractions by definition

and structure, are data base compatible. They are, however,

limited in their ability to represent knowledge. Therefore,

there exists the need to augment them with the character-

istics of the frames. The next subsection compares these

methodologies in detail, and proposes a means for combining

them.

62



B. COMPARING FRAMES AND ABSTRACTIONS

Attention is next turned to identifying exactly which

functions of the Model Base Management System are best

supported by either models abstractions, or frame systems.

It has been previously asserted that a MBSB must create

new models quickly and easily. Because frame hierarchies

require less expert knowledge from the model builder,

frame systems more easily can create new models, and

knowledge about those models, than can model abstractions.

We have asserted that model abstractions are at the second

level of abstraction. This is, however, only true if these

abstractions identify their terminals at the first level.

This is assumed and easily accomplished. Even at the second

level, though, an intelligent user must somehow select and

sequence processes for the model instance. Ideally, this

selection and sequencing process would be automatic given

the problem domain. Frames are well-suited for this process

of integration because of their ability to reflect asso-

ciations, inheritance, and similarities. This knowledge

assists the model builder, whether manual or automated, to

determine where the building blocks fit.

Model sequencing involves ensuring that models are

executed in the proper order. Frames can assist in this

process because of their hierarchical structure. For

example, once a model frame is created which has more than

one model building block, information about all the building
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blocks becomes a part of the knowledge base, including

information about when building blocks are executed.

Accessing existing models and model building blocks is

another vital dimension of a model management system. This

aspect also is better supported by the hierarchical struc-

ture inherent in frames. The access method may be quite

general using frame linkages from any level in the hierarchy.

Identification of optimization models may be done quickly

without specific model names or structures. This is not

apparent in model abstraction.

Conversely, model abstractions appear better suited for

cataloging models. Information about procedures, data

operators, and assertions for each model are important when

manually evaluating or otherwise auditing the model base.

The convenience of recording model base information in

the same format as data base information contributes to

clarity, economy, and consistency. In comparison, short of

selectively reformatting knowledge, much of the knowledge

contained within a frame would make little sense to a human

user.

Model abstractions appear more appropriate in linking

the model base to the data base. This primarily is due to

their ability to validate how objects are structured and

how procedures act upon those objects. These abilities are

not inherent in frames, and would have to be builtin.

Model abstractions appear better able to manipulate a

specific model once it is accessed through a frame scheme.
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Model abstractions accommodate modifications for a specific

model instance. As each model instance will have subtle

differences, this ability is vital.

The development of models involves bringing together

different classes of models. Some models might require

both economic forecasting and linear programming models.

Because of the frame's ability to hold knowledge about

different classes of models, a frame system appears better

suited for model creation. Figure 5.2 summarizes these

comments comparing frames and abstractions.

C. COMBINING FRAMES AND ABSTRACTIONS

Now that the advantages of frames vis-a-vis abstractions

have been compared, the next issue to resolve is which

features to extract. Additionally, a decision must be

made about the abilities a frame system should have, and

also what specific information should be included in this

system?

- - The abstraction concept presented by Dolk [Ref. 16]

remains virtually intact. The structure of the abstraction

will change slightly to fit into the frame system to be

developed in subsection E. The use of the abstraction will

alter conceptually as well. Third level abstractions
40

essentially will become frames with slots and facets hold-

ing the information that the third level abstraction prev-

iously held. The lower the level of abstraction, the more

specific the information becomes, thus fewer changes are
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CHARACTERISTIC FRAMES ABSTRACTIONS

MODEL SEQUENCING SYSTEM ASSISTED USER DEPENDENT

MODEL ACCESSING SYSTEM ASSISTED USER DEPENDENT

MODEL CATALOGING NONE MODELS WELL
DEFINED AND
CATALOGED

MODEL LINKAGE USER DEPENDENT SYSTEM ASSISTED
TO DATA BASE

MODEL USER DEPENDENT SYSTEM ASSISTED
MANIPULATION

MODEL CREATION LESS EXPERT USER DEPENDENT
KNOWLEDGE
REQUIRED OF
USER

Figure 5.2: Comparing Frames and Abstractions.
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required to the abstraction. In other words, the essential

aspects (such as data objects, procedures, and assertions)

play a vital role in the frame system. Data objects still

provide knowledge of what elements of the model are manipu-

lated by the procedures. Assertions still will state

characteristics of the specific model, such as linear

objective functions and constraints. Finally, procedures

still will identify those operators that will satisfy the

object4 .es of the MBMS by additions, modifications, etc.,

to thdt model.

In general, a frame system will perform a number of

functions (Ref. 20]:

(1) once a frame, slot, and facet have been provided,

the frame system will fetch information from the frame;

(2) it can ?ut information in the appropriate frame,

slot, and facet location;

(3) it has the ability to remove information within the

frame, or remove the entire frame;

(4) if no special information is available for a model,

default values should be accessed;

(5) inheritance from parent or otherwise associated

frames should occur; and,

(6) inheritance for default values also should occur.

All that remains is to generalize about the information

a frame system manipulating model knowledge should have.

This is dependent largely upon the level of sophistication
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anticipated of the users, and the complexity of the

application. Lenat [Ref. 231 suggests that in addition to

procedures, data objects, and assertions about a specific

model, we would like to know:

(1) Generalizations--Which other models have less

restrictive requirements (facilitate nonlinear constraints

for example)? In essence, we move up the hierarchy of

constraints with this information.

(2) Specializations--Which models are specialized

applications? For example, the transportation model is a

specialization of the linear programming model. We will

call these specializations. Here we move down the hierarchy,

adding constraints to our model formulations.

(3) Examples--For what kinds of situations is the model

appropriate?

(4) Is-a--What kind of model is it (e.g., optimization,

forecasting, etc.)? These will be identified through the

is-a link.

(5) Views--How can a view of the specific model in the

context of another be obtained? For example, how is integer

programming similar to other linear programming models,
and how is it different? This might be called information

views.

(6) Similarities--What other model(s) is the current

instance similar to?

(7) Definitions--How can it be determined if the

circumstance at hand will fit a model in the model base?
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(8) Preparations--How can the input model be prepared?

This can be called "preparations".

(9) integration--Can this model be integrated with

other models?

(10) Execution--How should this model be run?

Figure 5.3 is an example of how this abstraction would

look when combined with knowledge about frames.

We now are prepared to develop a simple example of how

all this information can be resident in a knowledge base of

frame representation. The next section develops such an

implementation.

D. THE MODEL DOMAIN

The knowledge base presented here makes use of typical

examples of models used in a business decisionmaking

environment. This knowledge is organized into a frame

system. Frames intuitively are pleasing for this task.

Problem solvers normally have a frame of reference tha)t

includes the parameters of the problem. For example, a

distribution system manager may have a problem involving

sources of product, destinations, and cost minimization.

It is the goal of the frame system to accept what the user

knows about a problem, and to translate it into knowledge

about a model instance. This is a matching process, i.e.,

an effort to bring the problem and the model together

through an interpretation of the parameters.
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Data Objects

object 1

object i

Procedures
procedure 1

procedure j

Assertions
assertion 1

assertion k

Generalizations
Specializations
Examples
Is-a
Views
Similarities
Definitions
Preparations
Integration
Execution
XO
Instances

L

6.

Figure 5.3: Convention for Describing a Frame-like
Abstraction.
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The concept of hierarchy is important to facilitate the

notion of inheritance. Frame representations are ideal here

for modeling work. As the problem solver clarifies the

issues involved, there is a movement from the general, or

high level of abstraction, to the specific, or lower levels

of abstraction--possibly to an actual model instance.

In our example, the world is subdivided into two major

categories, shown in Figure 5.4; these categories are

optimization and forecasting. This is, of course, a simpli-

fication for the purpose of demonstrating the use of frames.

Optimization problems are composed of linear programming

and nonlinear programming models. We do not expand the

nodes of forecasting nor nonlinear programming. Linear

programming is composed of the transportation model and the

assignment model. Finally, the transportation model is

subdivided into actual instances of the algorithm, namely

transl, trans2, and trans3.

Figures 5.5 and 5.6 are examples of the frames contained

in the knowledge base. The level of the frame in the

hierarchy determines the level of detail in the frame.

Figure 5.5 is a first level instantiation of transl. The

detailed knowledge about transl is extensive. Figure 5.6

is a fourth level frame; the knowledge contained in the

"optimization" frame is relatively general and limited.

The concept of general to specific is common among decision-

makers as they attempt to match parameters of their problem

instance to a solution method.
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level 4

*linear non-linear
*programming programming level 3

assignment transportation level 2

Figure 5.4: Organization of the Frame System.
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(transl (features (value (adjective)))
(ako (value (transportation)))
(generalizations (default (linear-programming)))
(specializations)
(example (value (sources and destinations)))
(views (value (northwest-corner, stepping-stone)))
(analogies (value (trans 1 trans2)))
(definitions (value (cost of shipments)))
(input (value (script for input)))
(sequencing (value (script for sequencing)))
(execution (value (script for execution)))

Figure 5.5: Example of a Lower Level Frame.
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(optimization (features (value adjective)))

(adjective-function (value (optimize)))
(ako (value (model)))
(instance (value (lin-prog non-lin-prog)))

Figure 5.6: Example of a Higher Level Frame
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Finally, in our model world, user interaction is required

as we migrate from one level to the next. The user must

specify which node on the next level needs to be expanded.

A demonstration of a simple frame system follows.

E. FRAME SYSTEM FUNCTIONS

The frame system implemented here is an adaptation of

Winston and Horn's (Ref. 201 frame system to a model know-

ledge base. There are 15 programs in this system, the

major features of which are demonstrated below. They are

written in LISP, and are contained in Appendix A.

The simple frame system developed here is unlike the

abstractions developed by Dolk [Ref. 16] in one important

regard: this frame system does not currently include

predicate calculus statements. Because predicate calculus

is not incorporated, the present system is not able to make

deterministic inferences about models and problems. Predi-

cate calculus would be straightforward to implement within

* "the facets of the frame structure. The following para-

* .graphs describe a basic frame system capable of expansion

to a full-knowledge representation scheme.

-" The program FGET retrieves information from a frame if

it is given a frame, slot, and facet. It is worthwhile to

recall that a frame possesses a name, some general features

which are slots, and some words describing those features

which are facets. Thus: (fget'transl 'ako 'value) returns

transportation.
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Conversely, FPUT places information in a frame given

the frame, slot and facet: (fput 'trans2 'ako 'value

'transportation) returns (transportation).

If this information is later learned to be incorrect,

FREMOVE will erase it: (fremove 'trans2 'ako 'value

'transportation) returns (t).

The "ako" element above stands for the phrase "a kind

of". The ako slot is very useful for inheritance. All

transportation models have certain things in common. These

common characteristics would appear under the frame name

of "transportation". Instances of transportation models,

such as trans2, would inherit these elements. For example,

trans2 would inherit the element of linear programming.

Frame functions may look in several facets to satisfy

a request. FGET-V-D looks first in the "value" facet,

and then in the "default" facet, in an attempt to retrieve

information: (fget-v-d 'transl 'generalizations) returns

(linear-programming).

Recall that the "value" facet holds the actual value

for the specific slot being described. In the restaurant

example, the tables slot might have had the value "French

Provincial", and the default may have simply been "booths".

4 In addition, if the frame system fails at finding

information in the value or default facets of the slot,

it may look for something in the "if-needed" facet; this

is the role of FGET-V-D-F. The if-needed facet contains
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procedures to be executed if the value and default slots

have no values in them. In this case, the system searches

first for a value and then a default, and failing at these,

it looks in the if-needed facet. It finds in this slot a

"demon"--a function that is executed when nothing is to be

found in the value or default facets:

(fget-v-d-f 'transl 'specialization)

returns (please supply a value for the specialization

slot in the transl frame.)

>'transshipment

returns (transshipment).

A function called FGETCLASSES returns the name of all

frames that a given frame is related to through the ako

slot. In this case, the ako slot acts as a link to higher

generalizations about the transl frame:

(fgetclasses 'transl)

returns (transl transportation (linear-programming)).

This is very useful for inheritance among frames that are

linked through the ako slot.

FGET-I is a program that looks for information in a

related frame if it finds nothing in the current frame.

In the following example we find nothing in the transl

* specialization slot, so we look for it and find it in the

specialization slot of the transportation frame. In this

way subordinate (or child frames) inherit information from

0 senior (or parent) frames: (fget-i 'transl 'specializations)

returns (transshipment).
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Finally, demons may be activated if we add a particular

facet to a frame. Say, for ex mple, that we add an instance

to a frame, it stands to reason that a frame should be

created for each instance. We put these types of demons in

the if-added facet of the slot in the frame associated

through an ako link:

(fput+ 'transl 'specialization 'default 'linear-

programming)

returns (procedures to be followed when adding specializa-

tions).

Two interesting features of the frame system are accom-

plished through the functions FCHECK and FCLAMP. FCHECK

is a function that takes as input a frame name, slot, facet,

and value, and checks to see if that value exists for the

specified slot:

(fcheck 'transl 'ako 'value 'transportation)

returns (t) if true, and (nil) otherwise.

FCLAMP is a function that ties two frames together so

that anything that goes into one frame will go into the

other. It takes as input the two frame names and the slot

that is to be duplicated between them. It works like this:

(fclamp framel frame2 slot)

Now anything that is entered in the specified slot will be

entered automatically into the other frame. It may be an

interesting incumbent of the if-added facet.
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This summarizes the abilities of the implemented frame

system. In the model domain, the strength of any system

can be found in its matching and reasoning ability.

Suppose the user only knows that the problem at hand

deals with minimizing the costs of shipping goods from J

some sources to destinations. The resulting candidate

frame will consist of only a few slots: costs, goods,

sources, and destinations. Armed with this information,

the system tries to match this candidate frame to existing

patterns in the knowledge base [Ref. 25]. A frame system

has the ability to respond to this type of sketchy problem

by answering several important questions:

(1) Does this candidate match an existing frame?

(2) If it does, is it an exact match?

(3) If it is not an exact match, which elements would

have to match to make it an exact match?

(4) Are the unmatched elements so important that the

pattern can not be used?

(5) If the existing pattern can be used, how would the

candidate elements be translated into the existing

pattern's elements? (For example, how can we decode

that goods are equivalent to commodities?)

A frame structured knowledge base with these reasoning

capabilities makes for a robust system.

Once the appropriate model has been found, the user

needs to know how to prepare input for it, and how to use
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it (execute it). Here the idea of a script is introduced

(Ref. 181. A script generally is defined as a standardized

sequence of events describing some activity in stereotypical

fashion, such as eating food or visiting friends. The

script is similar functionally to a frame, and thus fits

neatly into the knowledge representation presented here.

Most important, however, is its ability to anticipate

certain events in an activity. Figure 5.7 is an example of

a script. Scripts appear to be ideal for preparing input

for a model, and for executing a model.

Input preparation might include such tasks as format-

ting, sequencing, editing, etc. The next section attempts

to make it easier to use a frame system by attaching a

simple English-like command language to it.

F. ENGLISH-LIKE COMMAND SYSTEM

One of the impressive strengths of the frame system is

its ability to respond to English-like commands. Frame

representation languages have been developed to take

advantage of this strength [Ref. 14].

The front-end implemented here is a simple noun group

parser which is explained more fully in the following

section. It is written in LISP, and also is an adaptation

of Winston and Horn's [Ref. 20] English compiler. The

programs are listed in Appendix B, and a short User's

Guide is enclosed in Appendix C.
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(input-preparation (model (value (transl))
(instructions (value (formulate tableau))

(first (name rows and columns)
(second (assure rhs's are positive))
(third (specify rows + 1))
(fourth (specify variables))
(fifth (enter reader number))
(sixth (enter printer number))
(seventh (adjust dimensions))
(eighth (adjust format statements))
(ninth (call execution))

Figure 5.7: An Example of an Input Script.
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As input, our system receives a command verb such as

"identify", and a list of adjectives clarifying a ,oun

(see Figure 5.8). This results in an easily used sy tem

that is more friendly to the user than the frame system

previously described.

For example, in the previous section, the command

"to identify" the transportation models was:

(fget 'transportation 'instance 'value)

returning (transl trans2 trans3).

With English-like language we now can ask simply:

(request: identify the transportation models)

returning (there are) (transl trans2 trans3). In addition,

if the user wants to count the number of transportation

models in the model base, the command is given as:

(request: count the transportation models)

answering (there are) (3).

Of course there is a full range of commands required in

model base management such as: add, delete, and modify.

This command structure can be accomplished easily with the

LISP programs contained in Appendix B, by modifying the

parse-command program to "execute the frame programs

previously identified".

This system works in four phases as illustrated in

Figure 5.9. When the noun phrase is entered, the first

event that occurs is the building of a parse-tree. The

parse-tree contains such items of interest as the list of
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adjective (s)

Figure 5.8: Schematic of an Augmented Transition Network.
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program

evaluate
the

program

form the

results
and
a nswer

Figure 5.9: The Four Phases of Answering the English Query

[Ref. 201.
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adjectives, the noun (whether singular or plural), and

whether the determiner was definite or indefinite, Figure

5.10. This tree is placed on a property list for the

specific input phrase. The second step involves accessing

these values and constructing a temporary LISP program from

them. Third, this newly constructed program is executed.

During the execution, it retrieves from the knowledge base

(of frames) items meeting the qualifications identified by

the adjectives of the input phrase. Fourth, the results of

program execution are processed and presented to the user

as a response to the input request.

Of course, one would want to do more than simply identify

the models, or to know how many of a given model class of

models exist. A full set of commands would include all of

the manipulation parameters previously mentioned. For the

model domain, this is a relatively compact vocabulary,

dependent upon the degree of adaptability of English the

builder wants to incorporate. For example, the system in

Section Four can answer the question: "Identify the models".

However, if the request is phrased "which are the models?"

the system could not respond. While natural language

interfaces can be difficult to implement, an English-like

command vocabulary is a realistic objective with a high

payoff in usability and flexibility when combined with

frame system knowledge base.
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Input: A typical sentence.

node: children: (A typical sentence

determiner: indefinite number:

singular adjective(s):

typical noun:

sentence.

Figure 5.10: General Structure of a Parse-tree (Ref. 20].
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VI. CONCLUSIONS

A. AREAS FOR FURTHER RESEARCH

The purpose of this section is to summarize the research

presented, and to present areas for further research. The

first area for further research involves developing the

English-like command system for a frame representation

scheme on a model base of representative models. The

overall objective is to develop a vocabulary to access,

integrate, and manipulate both the model base and the

data base. A second area of research would attempt to

identify what specific knowledge is required in a compre-

hensive model base.

In our example we used frames, with an Augmented Tran-

sition Network (ATN) as a knowledge base only. That is,

our English-like commands did not invoke the frame functions

described in Chapter IV (E). In our system, the user was

required not only to know how to manipulate frames with

frame functions, but also to know an English-like command

vocabulary. Therefore, in addition to developing all of

the manipulation commands for model base management, our

English-like system should, in the future, invoke the frame

system functions as well.

Since we expect the user to become acquainted with our

modeling language, it would be most convenient if those

same commands interfaced with the data base. This raises

many issues:
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(1) In which data structure should the data base be

implemented? Are frames appropriate for typical

data items? Do human factors such as response time

outweigh the convenience of common English commands

for the data base and model base?

(2) If data are not organized the same way models are,

how much system maintenance overhead will be incurred

to integrate models and data?

Once we have developed basic English-like commands for

our interface to the model base, usage becomes an issue.

Are there some commands used in sequence so frequently as

to warrant a macro-command to accommodate users? For

example, is the command "identify" issued in sequence so

often that a command such as "browse" is appropriate? Or,

is the sequence "identify" and "update" so frequent that

a single update command would both access and update a

frame? Other usage statistics may involve performance

such as response-time, or session-time, for a specific

request. Still others may look at the size of the knowledge

base relative to performance, and identify that knowledge

rarely accessed for possible pruning.

Thus the field of natural language, and English-like

command languages, have interesting challenges and signi-

ficant payoffs.
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B. IMPACT ON THE DSS PARADIGM

This study has focused on the problem of managing know-

ledge about models within a DSS. Consequently, the para-

digm presented in Figure 2.4 differs only in regard to

its modeling component. Figure 6.1 illustrates this change.

The dialog management system still must pass to the

modeling component the appropriate commands and identifiers.

In addition, the data base still must pass to the model base

the information required to execute the models. Furthermore,

the presentation of model results remains unchanged.

The essential feature that has changed is the concept of

a frame management as a model base management facility.

The frame management system is one of several front-ends

that may have been applied to the problem. Production

rules are another favorite among builders of expert systems.

The frame management system was selected because of its

adaptability and flexibility. It has, we believe, the most

promise of model management schemes to date.

This paradigm thus becomes a more powerful configura-

tion of Figure 2.4 The underlying reason for this improve-

ment rests with the fact that the knowledge base now resides

with the model manager, and not with the user. The value of

this improvement is significant, as Keen (Ref. 21 helps to

point out:

(1) because it is easier to access models, the number of

alternatives considered will increase;
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Figure 6.1: A DSS Paradigm with Knowledge Base Support.
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(2) because the frame configuration facilitates a

variety of approaches to a situation, it is respon-

sive to unexpected demands and situations;

(3) there is a cost savings in clerical labor for the

collection and massage of input data for manual

modes of execution.

(4) there is a time-savings realized because the time

using the system is more effectively spent; and,

(5) all of the above will increase the quality of

decisions made, and the effectiveness of the resources

consumed for the making of that decision.

C. SUMMARY

This investigation has made the following attempts:

(1) to identify the myriad of requirements and challenges

faced by the implementor of a DSS;

(2) to identify the areas of AI that might be of value

in modeling the decisionmaking domain of an organ-

ization;

(3) to show how model abstractions can be extended to

the concept of frames; and,

j4) to implement a simplistic frame system as the basis

of a model management scheme.

This study has been an attempt to bind together the

fields of organizational behavior and computer science in

areas divergent from traditional data processing. The

convergence of Artificial Intelligence and Decision Support
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Systems is a promising area of research. Some forms this

research might take with regard to model management have

been presented.

As Minsky said: "Thinking always begins with suggestive

but imperfect plans and images; these are progressively

replaced by better, but usually still imperfect, ideas."

0
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K.-: APPENDIX A

PROGRAM-LISTINGS FOR THE FRAME SYSTEM

[Ref. 20]

(dtun fget (frame slot f~eec)

(uapcar 'car
(cdr (Assoc fdcet

(car (assoc slot
Cear (get irrire 'frare)j))))

Cdefun tassoc (key a-istj
Cono ((assoc N~ey -cc~r a-listj))

(t (coar (r.;I!cc tI±CIS a-list)
- . (list (list Key)MMl)

(defun tgetframe Ctra:-e)
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Cdefun fput (frame slot facet va~lue)
(Cond ((nmeipber value cLtqet trdme slot facet)) nil)

Ci (fassoc v.'Wue
(fassOc facet

-: I (fessoc slot
(tgetfraine frame))))

value)))

Cdetun p (messace)
(print (squasn ress.3ce)))

(detun squasn (s) ~},)

(squasn crs)))

(detun builder (

Etput 'a 'featu~res Ivaloe - terriner sincular In-jefinite))
(iput 'tne 'teitires 'vsl (adeter~rer aetin.IteJ)
(±pu~t 'lono 'cialective-tut-ction 'vd4ue 'Ion.Q)
Ctput 'long -6~cures Ovalce *canl~ective)i
(tput 'reo 'features value '(aojcctive))
(tput olarqe 'tedcures, 'val.ue 'Liclective))
Cfput olaroe %dolective-tunctlon 'value 'largeo2
(tput 'screirivers 'features 'valie '(flour. plural))
(fput 'scre.drivr linstarce ova.lu.t '(sl 52 34 S4 Sb))
(tput 'scre-arivers 'sirngular-torra IvALue 'screwdriver)
(Iput 'screworivers 'features 'value *(noun plural))
(tput 'si osL~e 'value Oar~e)
(fPUt 'S2 s. 'vaLue 'L-rce!
(iput '5.3 *size Ov~,lue 'larae)
(tput 'nooei 'tEetures 'value '(noun s~r.rqular)

CfPUt 'Model 'Inscatice 'vaiue C(ootin'±zatlon torecastina
llnear-coroaramr-ir. no-ierpori.ic
transoortdrion assione.-rir trdins! trans~i trans3))

(tpdt 'mocels 'teac-Ires 'value (nruun uilural))
(fput 'rods 'sinular-±or.1 'value 1',ocel)

(tout 'optlt;lzatlon ofeitureb. 'valwe 'taojectivejD
(fput lopt1i'lzation 'ierv-ucin value 'orclrize)
Cfput 'optlrLzation ',KOo val.;e -uce.2
(fput 'optialzation rt,.5tance 'value I:a-~varn

non-line.3r-prrs-iia.riny))
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gpt transt 'features 'value '(aalective))

(tPut 'transi 'aio 'vailue trans~ortati.en,
CfPut 'transi 'generalizatlons *value 'lner-rorannq)
Ctput 'transi 'specidlizations 'lf-neeca 'as')
CfPut 'transi lexarole 'value '(sources 6ICJ cestinatlons))
(tput 'transi 'views 'value 'Cnortn..est corner))
CtPut 'transl 'analontes 'value '(trans2 trins~lj
Ctput 'transi 'aetinitlonss 'value '(costs of snipm-ent)
CtPut 'transl 'input 'vslue '(script tor lro~t)
(fPut 'transi 'se'quancirng 'value '(icrirt for se;uencin-z))
Ctput Otralnsi 'exac,.tion *v01.C, '(script tor execution))
Ctput 'transcortatian 'fedcuri- 'value 't81I.octive))
(!Put 'transportatioin '-IKI 'Value 'ieir-rocramirng))

f (fput 'transportation 'scecielizi:1uns 'vajue 'trarnsnlp-ent)
(tput 'transpOrtatlvv. stCjeiat1ArAs 'lr iec -~ask
(fput *tranhportatcr~ 'incarce 'velit- '(trarnsl trans2 transS))
(tput 'transportation ' .'ctive-ru'ntior 'valut 'trdnsoort)
Cfput 'forecastina 'a-o 'value "cl

CfPut In e a r -c:o r:3l~ - ~ s-ac -~u i(r:sotto 5in~~l3
Cfput 'nlnear-rc;r.. -1-1 Izt.r 'v.a±':.e't'iaon
(fput 'asinerirtr r s' :1o '. ClInEa-frc'CCrar'rinorog
(fPut o'nransj 'or 'vdlue-. lntrce raiu asorain sirJn)

(fPut tain2 r 'oto ':ailue 'linear-pct ;rve))~g
Cfi~ut 'transi 'aKO Ivaltie ':rrssuortatior,

(tPut 'trans2 'specilization 'value 'transsnrient))

(detun fremove (frame slot facet va -je)
(prog (slots facets values t-jr.:'etJ

(setq s lots (fcetfr6a'e rrer'e))
(setq facets (ass('c slot tcor sictSjfl
(setq values (Assoc facet Ccmr r.'cets)))
(setq tarcet (asscoc value (cir vus)
(delete tarcet valiucs,
(cond ((null (car viJu--Cs))

(aelete values ±acetsf)
(cond ((null (car tcetsj]

(raclete t-icets slots)))

Cdefun fcr~ecK (trape slot Ije ~'e

(cond ((m'ember v~iuje Crcet rr'a,s slct fimcet)) t)
(t nil)))
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Cd feflamp (traa'el fra.me2 slat)
(defun d (tassoc slat (tqettrame frawel))

(cdr (fassoc slot (f,;etfrar;e tra~re2))])
slat) K

(defun fget-v-d Etras.ie slot)
(caMd ((fget tra.Le slot 'Value))

((fqet framne slot odetault)

(defun fqet-v-d-t (frAv-e slot)
(cond Cftget fra..,e slot 'aue))

(Ctget trazie slot A>eualt))
(t (eraca 'fainc-.ll

(toet trarre slot 'I!-neae,.)f))

Cdefun ask 0)
(print (append 'Cple~se supply a list for trie)

(list slot)
'(slot in tn~e)

* (list tran'e)
IjIrarne)3))

(read))

Cdofun tqet-i (framie slot)
(prog (classes result)

* (setq classes (tgetclasses tram.e))
* loop

(tget kcar classes) slot -value))
(return res'At))

(t (setq classes (car elassesil

(defun fput+ (tran slat facet value)
(caMd ((IPUt frd! .e slot facet vslue)

(macear '(laq.oda (i)
(',acc-u .'furcail

t cFt e slot 'I-auea)))
(t;etcldsses trara)

value)))
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Cdetn tgtclases tram.)
Cefun (qeu proqeny classes)

Csetq queue (list framie))
tryaaain
Ccond (Cntiii queuej (return Lreverse classes)))

(Mnot (memrber (car queae) clesses))
Csetq classes (cons (car Queue) classes))))

Csetq proceny (tqet (car queue) 'aKO 'Value))
Csetq ;ueue (car aueue))
(setq queue Ca~rero fuetze fpraceny))
(go tryaoain)j)

Cdefun fget-z (tramie slot)
(prog (classes result)

lop (secq classes ttgetclasses tra~oe))

(cond ((null classes) (return nil))
((setq result

J (or Croet-v-d (car classes) slot)
(amapcan '(16MCda (e) Ca~ply e nil))

(toet (car classes) slot 'It-needed))))
(return result))

Ct (setq classesC (el classes))
(go 1000)))))

Cdefun trfrfove+ (frame slot tacet value)
(Cond (Ctremave trame slot tacet velue)

(mapc '(lamoda Ce)
Crapc '(lab'a 1.2) kaocrly f nil))

Ctget e slot %:-re,boved)))
(!q-etclasses zd.J

value)))

(aefun tget-n (frame slot)
(prog (clisses reeult)

(setq classes Cf^.etclasses tran~e))
loopi
(cono ((v 3lj cl-isses) re)

C(set.1 re .lt(et (car classes) slot 'value))
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J Ct Csetq clesses (car classes))
(go loopdi)))

(ConM C(null classes)
Csetq classes tfy~telasses trarne))
(go 1oO0j)]
(Csetq result (foet (car classes) slot 'default))
(return result))
(t (set:1 classes fcdr classes))

(qo looPIM)
loop3
(cond ((null Classes) (return nil))

t(setq result (mapcan 'Clamoua (t) (CdQly 0 nil))
(f%;et (car classes)
slot
'it-neeoed)))

(return result))
(t (setQ elisses (cnr classes))

IL
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APPENDIX B

PROGRAM-LISTINGS FOR ENGLISH-LIKE COMMANDS

[Ref. 20]

Cdetun request: texpr (remainirn-*ords)
4 (prog (tree proorax. results noun-qrouo)

csetq tree (parse-cefrtdnc (We'nsv.') nl))
(setq program (-a~e-searcn-Pro;rz~". toet tree 'noun-croup)))
(set* results (eval pro~re'))

(cend C(equal (qet tree ccrdn) 'count)

(results (w~ (tf~ere is))

Ct (P'iborry the rec2est a data base clash)))
C~equal (get tree 'commanc) 'enumerate)
Ccond CCcdr re~sults) tr-' (tre results are%))

tn results))
4 (resu~lts co (tne result is;))

Cc results))
Ct (o'(uorry tne re-.,est no tr~e jata bise claspom)))

Cdetun compile macro tdescriptioni
(prog (name oacy ProcraA oeoinrirq ~~eeo

(setq naire Cesor tescr';;tlan))
CsetQ coo (e3or .. evcri..Lon))
csetq oe~of'rin-i

CSUOSt n-e
'replece

(sevc- c'arent-warn (car renPinjnc-,.ords))
(setn Crnis-noje Ccngsame 're~lace))))

Csetq
midldle
(apply

Cftapcar

(state)
(list (cfr state)
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(clause)
(append (list (caar clause))

(coflj C(cedadr claube)
Cccr caacr clluse))))

(list (list 'go (Cadoor clause)))
* (cdr state))

I(tt (go lose))))
body)))

CSetq end
*(win Ccond ((not (test: tni-node teetures)) (go lose))

(attach tnjs-r.60e paren~t-n~ode)
(zeta~ last-rarseo trnis-roae)KQI (return tfis-nooe)
lose
(Setq re'maininQ-moros NobO)
(set-, eurrent-,Aora rLcdr rermainino-worcs))

(return nil)))
4(setq progra7 Ca;;enj ceginnina mi±ule end!,)

(return (11sc 'oefun race *(r'arernt-rnce ±eistures) prooraP)M)

Cdetun ma~e-search-procram (naue)
(append
'tsuost (proo Cnoun)

(setq no-in (get noce 'noun))
(return (Cond (tmencer jlural (car (cet noun 'features 'Value)))

(car (tost noun 'singular-torm 'value)))
(t noun))))

*noun
I(prog (ovjects)

(setq ooJects (car (taet 'noun lInstdnce 'value))
Cmapear
'(lambda (arilective)

(suost (car(tatt adiective 'adjective-tuflction 'valtie))
'predicate
'(Seto Oc)'ects

riap c an
'Clameaa Can~loate)

(cono ((predicate candidate)
(list canoloate))
(t nllj)

objects))))
(get node 'aectIvtsj)

Ciuos t (Prog (neter.nlner ru-cer)
(seti ietertrinex Lqet rnoae 'aeterr,.lner);

* (seta fluflDer (,;et nooe lru'rer))
(return

(cork- (Cfruit Pterr,1npr 'netfti~te)
(Corao (Leq~ual nv,: r Isingular

* ((ecual nv;cer 'P'lurai.)
'(greatern Llenctn oojects) 1)))j
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((equal aetercmrner linaetlnLte)
tcondJ C(equil nunoer *sinaular)

(aoreaterp tlertn ob~ecCs) 0))))
C(nufmoerr nurxter)
(list 'oreaterp '(1enotl 00jeCts) nupter))J)))

(t (returt nil)))))

(compile parse-comweani
(sl (if (and equal current-'%Oro 'ounrt)

(Parse-woro tnls-nccae It))
-3 2

afterL str I c .no 'count))
(if Can-i (aGniJ. currenc-.-cra 'Imentlfy)

* ~(oarse-'.ora tt:LS-nG.e 2)
* -) s2

* atter
Cs I comI,~ 'enu'~erate)))

Cs? Cif (6nia (Parse-noun-qro~p tils-nooe nilJ)

after
(secr 'noun-4roup lasc-parseo))J)

(Compile parse-noun-oroupx
(31 (if (Parse-wora tnis-noce 'oeterminer)

at ter
Csetr *nwmcer (select '(singllr plural)

(cgett last-parsecj))
(setr 'deter:"1fer (select 'Idef.Lrite ir'aeflralte)

(if t ") ska))
Cs2a (it (curse-moro tris-rnoe 'nurrter)

after
(cono ((e7:uiJ Isinru~ler (cetr '~I~~)

(sttr InL.'er (zet last-parsec InutmLer));
(it t -> sl))

Cs2 (it (ani rt~iinirc-oor-?s
(5*10ct '(aclctive-nounj

(os'rsP-veor~ tnis-s,oe '3(2)ectivej)
-)s2

otter
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Caddr 'adjectives last-parsej))

cit cpars-- ni-nde'nun
>) win

after
Ceond ((equal

clengtA cintersection '(singular Plural)
(cons (qetr 'nuwiier)

-; (qett last-;aarSed))))

(print *tilt-determiner-rnoin))
((and (nunoerv Cgetr 'numcer)

(m~ember *slnqu4ler (Gott 14st-parsea)))
(print 'tli.t-nui.rer-nmur)fl

(cond ((not (numoerz (vetr 'nu~ioer)))
(setr 'nurraer (select 'tsinflar Plural)

Csetr 'nounl last-=arseo));)

Ccompll*Par se-wor
(compil t -> I n

(car reft-aininc-worcis 2))
Ct (setq current-iwcrd rill))))))

Cdefun setr (register vslj)
CPutprop tnis-noce valu~e reoister)
value)i

(defun getr Crenister)
(got thib-node reqister))

* . (detun select (V Y)
(conci ((null x) nil)

C(r.emver (ciq* Y ) (cer X))
Ct (seiect (:or :0 )
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Cdefun genname (nftn'e)
(prog (n)

(conl ((set~a n (get name InamecounterM)

(putp.r'o na~ (Scal n) 'nafmecounter)
(return (irnplcce (&;Pend (exploce name)

(explooe n))))))

Cletun largep (object) (equal (Cer(tqet oo~ect 'size *value)) 'large))

Cdetun redp (object) (e'iual (get ornject 'color) 'red))

(detun lonqp COb~eCt) (ureaerrI(Qrciet object 'length~) 0.) 6.0)

(detun gett Cxi (car (±qet x 'geatures 'value)))

(defUn testf (Mode feqtjres)
(COnd ((null reatures))

Cdto rtetures)
Csetq feetires (l1sc features))))

Cequal (lengtM teitures)

(lenqtrl (lntersectior, features (t~ett nocte)))))

Cdefun attecn (c o)
(putpro6 c ; *uarent)
Cputprop P

(accerno (jet p 'cillaren) (List c))
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Cdttun intrsctionCY ) (exi y)

COemeer (car x) Y

(detun addr Creaiister v~lue)
(sotr reqlster (cons value (Cetr registeri))))

CPutprop *a 'Cdeterffirner sincular inoa!tinite) Iteacures)
CPutprop 'th~e 'Coettr .1aer netinite) ':eaturms)
(Putprop 'long 'lonq: 'aojeetIve-funictiol)
Cputprop 'red '(dolective) 'teatares)
(putprop 'large 'C~sjective) '!eatures)
Cputprap 'screworiver '(noun sinquL~r) 'features)j~.i putprop 'screonrivtors '(noun plura-1 'features)
CPutprop 'lonq '(6-iicciveJ 'teatures)

-~(putprop 'screwarive-r 'inour sin~ular) 'tepturevs)
(putprop 'screwdriv~er 'is1 s2 ss s4 s~j 'Icstarce)

Ps (Cputprop *3crewarivers 'screw-iriver 'sinular-form)
Ctaztprop 'tool 'Cna-ar scre-arlver sa.o brencn) 'Instance)
Cputprop Inammer 'ri linftapc, j
(Putprop 'sao 'sawt 'instace)
Cputprop 'wrenen 'iA ) *instance)
CPutprop 'large '16r,eL' '4deCLIV-t.nCtIOr')
(Putprop 'red 'reenn ',iajective-furictlon)
( Putprep '5i 'lace -size)
CputproP '51 'bvlue 'color)
CputproP '21 '7 '.enatni
Coutprop 's2 'larie 'size)
Cputprop 'S2 'red 'cnicr)
( putarop '53 'iarqi 'si.zej
Cputproo 'si 'reo 'cuLer)
CPutprop 'S4 'Smll~J 'size)
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Cputprop 'sS *smaell *size)
Cpucprop 'hi 'metal I-aterial)
Cputprop 'saint 'metal 1aterial)
Cputprop 1*1 *metal 'taterial)
(PutProp 'metal 'met.lt; 'aojectlve-function)MiCputprop 'metal '(a*:VtctIveJ ±eatures)
Cputprop 'tool '(ncun stn;ular) 'features)
CPutprop 'tools 'tool 'sin'ular-ror,)
CPutprop 'tools '(notir mlial) Iteatures)
(putprop 'saw 'metal "oaterlali
Cputprop 'hammer metCal 'T.terldi)

Cputprop 'screwdriver -etal 'Inaterial)

- I (detun Imetalp Corject) (equal (get cbject 'material) 'metal))

L (putprop 'name 'c 'na~aeeounter)'

4 (compile parse-noun-:irouo
(s1 (it (Parse-*arc t'nis-noce 'oeter' iner)
-> s2
after
(betr 'number (select '(slrngul.~r plural)

(geti last-Ladrsed))j
Csetr 'oeter.~inner (select '(deflriite irietinite)

(getf last-versed)))))
(52 (if (parSe-vord tr'is-nod- 'Oi1)ecttve)

-)s2

after

Cif Coafsp-inord tnis-ncde 'noun)

after
Csetr 'num'~er (select '(sineoular pl~ral)

(gett last-parsecf)
Cbetr 'n~oun last-parsec)fl2

(compile oarse-clause
(si (it (parse-moun-arcup this-norie nii)

->s2

after

(&2 (if (parse-for,3 tLns-rno.e 'ver.. ternsea)j
s) 3

Cs3 (if (ginC (qC,,I a L I st-; A!rsj It a)
(carse-*ora trils-fiene ',6st,artLcli~ie))

-> 5
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after
':- Csetr coject caecr 'sunject))

I Csetr Isuoject nil)
Csetr Ivera isst-Parsei))

(It (and Ctestt (coetr 'verc) 'transitive)I -~ Coarse-moun-croup ttnis-noce nil))

after (setr loritet last-r~rspn))

(getr 'lotject))
-~S4))

(54 (if (anQ Cietr Isuclect)
(nuLl reoalnng~-words))

-)wIn)

(if (and (not (aetr Isublect))
Cecuai current-jecra 'tv)
(cLarse-woru triLs-noce r.11)2

-~55)

sSItafter

(defn PfhllisF Oet t (suc el (ao-cne)ac)) ye 'nilp

CPUtProp 'Pnilllrs *C4olectlve) *featu~res.)
iputprop 'Phillirs 'vn''L Iisr * adjective-run~ctOl)
(putprop 'S1 'n1L1Bs 'type)
cputprop 's4 'Pnill.ps 'type)
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APPENDIX C

USER'S GUIDE

The English-cammand programs and the frame systen's programs
are implemented in Franzlisp for the PDP-1/70 under UNIX. UNIX
terminals at the Naval Postgraduate School are located in Roam 502.
An account number may be acquired through the Computer Science
Office from Al Wong or Bruce Mcntague.

Once the programs in Appendices A and B have been acquired
(either by entering then yourself, or from another account), using
them is straightforward. After logging on:

(1) Enter the LISP interpreter by entering percent (%) LISP,

(2) Load the LISP programs to the interpreter,

(3) Execute the program "builder" to construct the frames by
entering (builder), and

(4) You are now prepared to ask questions of the system c the
format presented in Chapter V of this study.

These programs are easily improved by entering new dictionary
words to the program builder, and by changing cammands in the pro-
gram Parse-ccmmiand.

107



LIST OF REFERENCES

1. Ackoff, R. L., "Management Misinformation Systems",
Management Science, v. 14, pp. 147-56, December, 1967.

2. McKenny, J. L. and Keen, P. G. W., "How Managers'
Minds Work", Harvard Business Review, v. 51, pp. 41-68,
May-June 1974.

3. deBono, E., Lateral Thinking for Management, pp. 3-7,
American Management Association, 1971.

4. Mintzberg, H., "Planning on the Left Sice and Managing
on the Right", Harvard Business Review, v. 53, pp.
49-58, July-August 1976.

5. Roland R. J., An Interactive Decision Support System
for Technology Transfer Pertaining to Organization and
Movement, working paper at the Naval Postgraduate School,
Monterey, CA, 1980

6. Huber, George P., "The Nature of Organization Design
of Decision Support Systems", v. 5, pp. 1-10, MIS Quarterly,
June 1981.

7. Mintzberg H.; Duru, R.; Theoret, A., "The Structure of
Unstructured Decision Processes", Administrative Science
Quarterly, v. 21, pp. 246-75, June 1976.

8. Stavell, C. B., Individual Differences in Managerial
Decision Making Processes: A Study of Conversational
Computer System Useage, Ph.D Thesis, Massachusetts
Institute of Technology, September 1974.

9. Gorry, G. A., Scott Morton, M. S., "A Framework for
Management Information Systems", Sloan Management
Review, v. 13, pp. 55-70, Fall 1971.

10. Simon, H. A. and Newell A., Humans as Information
Processors, pp. 39-50, American Psychological Asso-
ciation, 1971.

11. Davis, R.; Buchanan, B. G.; Shortliffe, E. H.,
"Production Rules as a Representation for a Knowledge-

based Consultation System", Artificial Intelligence,
c. 8, pp. 14-45, August 1977.

12. Sprague, R. H. and Carlson, E. D., Building Effective
Decision Support Systems, pp. 3-54, Prentice-Hall, 1982.

108



13. Bonczek, R. H.; Holsapple, C. W.; Whinston, A. B.,
"Future Directions for Developinq Decision Support
Systems", Decision Sciences, v. ii, pp. 616-31, Jan-
uary 1980.

14. Winston, P. H., Artificial Intelligence, pp. 235-52,
Addison-Wesley, 1977.

15. Bonczek, R. H.; Holsapple, C. W.; and Whinston, A.B.,
Foundations of Decision Support Systems, Academic
Press, 1981.

16. Dolk, D. R., The Use of Abstractions in Model Manage-
ment, Ph.D Thesis, University of Arizona, 1982.

17. Minsky, M., "A Framework for Representing Knowledge",
P. Winston Ed., in The Psychology of Computer Vision,
pp. 211-77, McGraw-Hill, 1975/

18. Barr A. and Feigenbaum, E. A., The Handbook of Artifi-
cial Intelligence, v. 1, HuerisTech Press, 1981.

19. Elam, J. J.; Henderson, J. C; Miller, L. W., Model
Management Systems: An Approach to Decision Support
in Complex Organizations, unpublished working paper,
The Wharton Schook, University of Pennsylvania, 1981.

20. Winston, P. H. and Horn, B. K. P., LISP, Addison-
Wesley, 1981.

21. Goldstein, I. P. and Roberts B., "Using Frames in
Scheduling", in AI: An MIT perspective, P. H. Win-
ston and R. H. Brown eds., v. 1, MIT Press, 1979.

22. Weizenbaum, J.,"ELIZA--A Computer Program for the
Study of Natural Language Communication Between Man
and Machine", Communications of the ACM, v. 9,
January 1965.

23. Lenat, D. B., "AM: An Artificial Intelligence Approach
to Discovery in Mathematics as Hueristic Search", SAIL,
AIM-286, Artificial Intelligence Laboratory, Stanford
University, July 1976.

24. Hillier, F. S. and Lieberman, G. F., Introduction to
Operations Research, Holden-Day, Inc., 1967.

25. Tennant, H., Natural Language Processing, PBI, 1981.

109



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93940

3. Computer Technology Curricular Office
Code 37
Naval Postgraduate School
Monterey, California 93940

4. Lt. Col. J. K. Mullane, Code 0309 1
U.S. Marine Corps Representative
Naval Postgraduate School
Monterey, California 93940

5. ILT George W. Watson, Jr. 2
117 Main Street
Westford, Massachusetts, 01886

6. Professor G. Rahe, 52Ra 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

7. Assistant Professor D. D. Dolk, 54Dk 1
Department of Administrative Sciences
Naval Postgraduate School
Monterey, California 93940

110

:110

" , ' . . -.. " , . .. . . . - , . . .. . ' , , . '_ . . - * • " . . . . . -



- .'S- - -- ~ -

p4  -J

IF.

"WI -1


